Spanning Trees with a Bounded Number of Leaves
نویسندگان
چکیده
In 1998, H. Broersma and H. Tuinstra proved that: Given a connected graph G with n ≥ 3 vertices, if d(u) + d(v) ≥ n − k + 1 for all non-adjacent vertices u and v of G (k ≥ 1), then G has a spanning tree with at most k leaves. In this paper, we generalize this result by using implicit degree sum condition of t (2 ≤ t ≤ k) independent vertices and we prove what follows: Let G be a connected graph on n ≥ 3 vertices and k ≥ 2 be an integer. If the implicit degree sum of any t independent vertices is at least t(n−k) 2 + 1 for (k ≥ t ≥ 2), then G has a spanning tree with at most k leaves.
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملNeighborhood unions and extremal spanning trees
We generalize a known suÆcient condition for the traceability of a graph to a condition for the existence of a spanning tree with a bounded number of leaves. Both of the conditions involve neighborhood unions. Further, we present two results on spanning spiders (trees with a single branching vertex). We pose a number of open questions concerning extremal spanning trees.
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملSpanning trees with a bounded number of leaves in a claw-free graph
For a graph H and an integer k ≥ 2, let σk(H) denote the minimum degree sum of k independent vertices of H . We prove that if a connected claw-free graph G satisfies σk+1(G) ≥ |G| − k, then G has a spanning tree with at most k leaves. We also show that the bound |G| − k is sharp and discuss the maximum degree of the required spanning trees.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017